
OVS with AF_XDP
what to expect
William Tu, VMware Inc
Eelco Chaudron, Red Hat

December 10-11, 2019 | Westford, MA

Why AF_XDP?

A fast and flexible channel between userspace and kernel
• Another way to get better performance besides DPDK
• A more friendly way to do kernel-bypassing

– Dynamically steering packets using XDP program
• Userspace datapath is easier to maintain than a kernel

module
• Share the same datapath with OVS-DPDK

See last years af_xdp presentation: https://ovsfall2018.sched.com/event/IO7p/fast-userspace-ovs-with-afxdp

2

https://www.google.com/url?q=https://ovsfall2018.sched.com/event/IO7p/fast-userspace-ovs-with-afxdp&sa=D&ust=1576077121173000&usg=AFQjCNFBdyK5jRBc4mwMuusEZXjXkOTajA

AF_XDP (Userspace) Caveat

• Device directly DMA buffer into userspace
– OVS runs datapath in userspace (dpif-netdev)

• Difficulties when integrating features inside linux kernel
– TCP/IP stack
– Connection tracking using netfilter
– TC rate limiting

3

Performance Comparison

• We used the ovs_perf suite for testing
• 10G ethernet, wirespeed test
• Topology: PVP and P tests [single physical port]
• OpenFlow rules, NORMAL rule (l2 forwarding)
• Packet sizes: 64, 256, 512, 1514
• Flows: 1, 100, 1000
• No latency tests :(

ovs_perf can be found here: https://github.com/chaudron/ovs_perf
Last years presentation: https://ovsfall2018.sched.com/event/IO9n/ovs-and-pvp-testing

4

https://www.google.com/url?q=https://github.com/chaudron/ovs_perf&sa=D&ust=1576077121356000&usg=AFQjCNFK58PptUcy20QLJ7U4CsK5PtQQAg
https://www.google.com/url?q=https://ovsfall2018.sched.com/event/IO9n/ovs-and-pvp-testing&sa=D&ust=1576077121357000&usg=AFQjCNH5AyEVgp_CTQL-sqjji538QikRZQ

Performance Comparison, cont.

• What will we compare?
– AF_XDP TAP vs Kernel
– AF_XDP TAP vs AF_XDP VHOST
– AF_XDP VHOST vs DPDK
– Native AF_XDP vs AF_XDP DPDK PMD

5

Kernel datapath results

6

Physical Port Loopback

PVP test, using single port

Kernel datapath results, cont.

7

Physical Port Loopback

AF_XDP userspace datapath results

8

NOTE: All native AF_XDP tests were run with use-need-wakeup = true

PVP: kernel tap, vhost_net

AF_XDP userspace datapath results, cont.

9

AF_XDP userspace datapath vs Kernel datapath

• So for the comparison we pick one test
– Use the PVP tests, as it represents a real life scenario
– Use 64 byte packets as this does not fill the pipe
– Use 100 streams

10

AF_XDP userspace datapath vs Kernel datapath

11

AF_XDP Kernel AF_XDP Kernel

AF_XDP userspace datapath vs Kernel, conclusion

• Pros
– Use less CPU power
– More throughput
– No kernel module dependencies

• Cons
– Missing kernel datapath features, see datapath feature table:

https://docs.openvswitch.org/en/latest/faq/releases/
– It also has no “QoS - Policing support”
– Traffic from a “kernel” interface uses slow path (same as DPDK)

12

https://www.google.com/url?q=https://docs.openvswitch.org/en/latest/faq/releases/&sa=D&ust=1576077121624000&usg=AFQjCNEPCOIGMcNTKEzaO_jRtNFzQ9X42A

Physical Port Loopback

DPDK userspace datapath results

13

PVP: dpdk vhostuser

DPDK userspace datapath results, cont.

14

PVP: dpdk vhostuser

AF_XDP userspace datapath results + DPDK vhost

15

AF_XDP TAP vs AF_XDP VHOST

16

AF_XDP AF_XDP VHOST AF_XDP AF_XDP VHOST

AF_XDP TAP vs AF_XDP VHOST, conclusion

• Pros
– VHOST Use less CPU power (Qemu & TAP)
– Throughput roughly doubles
– Constant CPU usage (even if you add more interfaces)

• Cons
– Need to setup DPDK also
– Separate memory pool for DPDK (hughe pages)

17

AF_XDP vs DPDK userspace datapath

18

AF_XDP VHOST DPDK DPDKAF_XDP VHOST

AF_XDP vs DPDK userspace datapath, conclusion

• Pros
– Less CPU power needed (can use irq pinning / multiqueue)
– Throughput increase of roughly 1.6x

• Cons
– Need to setup DPDK
– PMD network driver problems
– Can’t use XDP program steering

19

OVS with AF_XDP DPDK PMD

• DPDK has a native AF_XDP PMD
• Allow you to use existing DPDK environment
• If enhanced it could allow for packet steering

20

Physical Port Loopback

AF_XDP DPDK PMD results

21

PVP: dpdk vhostuser

AF_XDP DPDK PMD results, cont

22

Native AF_XDP vs AF_XDP DPDK PMD datapath

23

AF_XDP PMD AF_XDP PMDAF_XDP VHOST AF_XDP VHOST

Native AF_XDP vs AF_XDP PMD datapath, cont.

• Pros
– Throughput increase

(due to mbuf reuse vs copy in native AF_XDP)
– QoS - Policing support

• Cons
– Need to setup DPDK
– No XDP packet steering (yet)

24

Future Items

• Shared umem between ports to avoid memcpy [OVS]
– This is why the AF_XDP PMD performs better

• Native zero copy support for veth/tap interfaces [Kernel]

• VHOST library to avoid including/using DPDK [OVS]

• Egress QoS support for AF_XDP interfaces [OVS]

25

Future Items, cont.

• CI testing of AF_XDP [OVS]

• Load custom XDP programs [OVS]
– Patch is currently on the maillinglist:

netdev-afxdp: Enable loading XDP program

• Allow more finegrane driver loading [OVS]
– skb mode, or driver mode with or without zero-copy
– Patch is currently on the maillinglist:

netdev-afxdp: Best-effort configuration of XDP mode

• 26

https://www.google.com/url?q=https://patchwork.ozlabs.org/project/openvswitch/list/?series%3D%26submitter%3D%26state%3D*%26q%3Dnetdev-afxdp%253A%2BEnable%2Bloading%2BXDP%2Bprogram%26archive%3Dboth%26delegate%3D&sa=D&ust=1576077122066000&usg=AFQjCNEqPrpCv0dy16a_zxvaiRdhV1Q4gw
https://www.google.com/url?q=https://patchwork.ozlabs.org/project/openvswitch/list/?series%3D%26submitter%3D%26state%3D*%26q%3Dnetdev-afxdp%253A%2BBest-effort%2Bconfiguration%2Bof%2BXDP%2Bmode.%26archive%3Dboth%26delegate%3D&sa=D&ust=1576077122067000&usg=AFQjCNH9Wh1Rt8jSlDqqZx_3NR0-24pJ0g

Conclusion

• Stuff we did not do
– Compare latency
– Compare multiqueue support

• AF_XDP sits between kernel and DPDK
– From throughput and CPU usage perspective
– Missing some kernel feature (and DPDK QoS - Policing support)

• AF_XDP requires kernel support
– But if the kernel support AF_XDP there is no kernel module

dependency

27

